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1 Introduction

Topologically massive gravity (TMG) [1, 2] is an interesting extension of three-dimensional

gravity which contains both propagating degrees of freedom as well as black hole solutions.

The action of TMG is obtained by adding to the usual Einstein-Hilbert action with a pos-

itive Newton constant a gravitational Chern-Simons contribution, with coupling constant

1/µ. As for the usual Einstein-Hilbert action, TMG may also be supplemented with a

negative cosmological constant −1/ℓ2.

A particular vacuum of TMG with a negative cosmological constant is AdS3, which

also contains the BTZ black holes [3, 4]. For arbitrary Chern-Simons coefficient, the

AdS3 vacuum suffers from perturbative instabilities. However, it was noted in [5] that

at the special point µℓ = 1, the AdS3 vacuum is stable and the theory has a purely chiral

spectrum [6], once we impose Brown-Henneaux boundary conditions [7, 8]. It has been

shown in [9] that the quantum partition function of chiral gravity has all the required

features for the theory to be dual to an extremal CFT [10]. The existence of extremal

CFTs remains an open question [11].

AdS3 is only one of various possible vacua of TMG with a cosmological constant. As

shown in [12–16], less symmetric vacua known as warped AdS3 occur as classical solutions

to the equations of motion. These solutions are specific to TMG, i.e. they are not solutions

of pure Einstein gravity with a cosmological constant. Their defining property is that

they are real line fibrations over AdS2 preserving a single SL(2,R) isometry of the original

SL(2,R)L×SL(2,R)R AdS3 isometries, along with a non-compact U(1) isometry generated

by translations along the fibre coordinate.

The warped vacua of TMG fall into three types: spacelike, timelike and null warped,

depending on whether the norm of the Killing vector generating the U(1) isometry is pos-

itive, negative or zero. Each of the first two types can be further classified as stretched

(µℓ > 3) or squashed (µℓ < 3) depending on the magnitude of the warp factor. The fact

that these background spacetimes are not asymptotically AdS3 makes them very interest-

ing to study, since we could hope to develop new types of holographic correspondences.

In [17] such a correspondence was proposed and the central charges of the putative CFT

were conjectured.1

Quotients of warped AdS3 along various Killing directions may give rise to black

holes [17], in perfect analogy with the BTZ case in AdS3. Black hole solutions free of

closed timelike curves (CTCs) can only be found in spacelike stretched and null warped

AdS3. One can also consider quotients of spacelike warped AdS3 along the U(1). Such

geometries have Killing horizons and no CTCs, they resemble the self-dual solutions in

AdS3 [26]. Thus, the spacelike warped TMG vacua seem the most interesting to study.

The subject of the present article is the classical stability of these spacetimes. Special

attention will be given to the spacelike stretched case, which is richer and better understood.

The stability about a certain background depends on the selection of consistent boundary

1Related questions have been tackled in the case of the Kerr/CFT correspondence [18], and in the recent

subject of theories dual to non-relativistic CFTs [19, 20]. Warped AdS3 has also been studied in the context

of string theory [21–25].
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conditions. For example, the propagating mode of TMG in an AdS3 background carries

negative energy, thus rendering the theory unstable. Chiral gravity is spared because the

massive graviton disappears from the spectrum at µℓ = 1, for Brown-Henneaux boundary

conditions [7, 8]. There exist several consistent choices of boundary conditions for TMG

in AdS3 [27, 28], but only the more restrictive ones exclude the negative energy modes.

We find a similar situation for propagating modes in spacelike stretched AdS3. While

the massive gravitons of warped AdS3 have negative energy, we will see that they do not

obey the Compère-Detournay boundary conditions [29, 30], which are the only consistent

set of boundary conditions proposed in the literature. Thus we discard the massive gravi-

tons from the physical spectrum. These boundary conditions are still relaxed enough to

allow the stretched AdS3 black holes, which was the original reason they were studied.

Having discarded the propagating modes from the spectrum, all we are left with are

pure (large) gauge modes. It is well known that if these excitations fall off slowly enough

near the boundary of the spacetime they should be included in the physical phase space.

The analysis of the asymptotic symmetry group in spacelike stretched AdS3 performed

in [29] shows that the energy of such pure large gauge modes has to be positive. Incidentally,

for our proposed boundary conditions the only remaining excitations have definite chirality.

This is quite reminiscent of what happens in chiral gravity.

While we find strong evidence for the stability of stretched AdS3, the case of squashed

AdS3 remains inconclusive. The main culprit is our lack of understanding of the boundary

of this space and of a set of consistent boundary conditions. Nevertheless, all the explicit

and implicit propagating solutions to the linearized TMG equations of motion that we

found hold equally well for squashed as they do for stretched AdS3, and they can be used

to study the stability of this spacetime once the aforementioned issue is overcome.

The organization of this paper is as follows: in section 2 we review the TMG action,

warped AdS3 backgrounds and black holes. In section 3 we describe our general procedure

for gauge-fixing, finding the linearized solutions to the TMG equations of motion, impos-

ing boundary conditions and computing the energy density of the gravitational waves. In

section 4 we display the explicit highest weight propagating solutions and compute their

energy. We also study general propagating solutions. In section 5 we display the bound-

ary conditions for stretched AdS3. We conclude with a discussion in section 6. Various

derivations and expressions are presented in the appendices.

2 Preliminaries I: the background solution

In this section we discuss the basic framework and the background warped AdS3 geometry

that we will work with. We also review the black hole solutions obtained from discrete

global identifications of the background and the asymptotic structure of these solutions.

2.1 The action

The action for topologically massive gravity (TMG) [1, 2] is

ITMG =
1

16πG

∫

d3x
√−g

[

R+
2

ℓ2
− 1

2µ
ελµν Γρ

λσ

(

∂µΓσ
ρν +

2

3
Γσ

µτΓ
τ
νρ

)]

(2.1)
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where ε012 = +1/
√−g and µ is a dimensionful coupling with dimensions of mass. While

it is well-known that pure three-dimensional gravity possesses no propagating degrees of

freedom, the addition of the higher derivative term introduces a new, massive, propagating

degree of freedom, the so-called massive graviton. When linearizing TMG about flat space,

the mass squared of the propagating graviton is µ2.

It will prove to be convenient to introduce the new quantities ℓ and ν, defined as

Λ = − 1

ℓ2
, µ =

3ν

ℓ
(2.2)

In terms of these, the TMG equations of motion are given by

Rµν − 1

2
Rgµν − 1

ℓ2
gµν +

ℓ

3ν
Cµν = 0 (2.3)

where

Cµν =
1

2
εµ

αβ∇α

(

Rβν − 1

4
gβνR

)

(2.4)

The Cotton tensor, Cµν , is symmetric, traceless and conserved and vanishes on shell for all

Einstein solutions.

2.2 Warped AdS3 backgrounds

All solutions to pure 3d Einstein gravity with a cosmological constant have vanishing

Cotton tensor, so they are automatically solutions of TMG. Nevertheless, there also exist

nontrivial solutions particular to TMG, such as the warped AdS3 solutions, which come in

several types [15–17, 31].

We will focus on the vacuum solution known as spacelike warped anti-de Sitter space,

with metric:

ds2 =
ℓ2

ν2 + 3

[

−(1 + r2) dτ2 +
dr2

1 + r2
+

4ν2

ν2 + 3
(dx+ rdτ)2

]

(2.5)

where r, τ, x ∈ (−∞,∞). The boundary of this space resides at r → ±∞ for fixed x and

x→ ±∞ for fixed r. To simplify our formulae, we will often use the warp factor

a ≡ 2ν√
ν2 + 3

, a ∈ [0, 2) (2.6)

If a > 1 the spacetime is called stretched, whereas if a < 1 it is called squashed. Finally,

a = ν = 1 corresponds to global AdS3.

The above coordinates are geodesically complete, as reviewed in appendix A. Further-

more, the constant τ slices are spacelike for all r, thus rendering τ as our global time

coordinate. When ν2 ≤ 1, ∂τ is a globally defined timelike Killing vector; however, for

ν2 > 1 it becomes spacelike at large r. Thus for ν2 > 1 our spacetime resembles the region

within the ergosphere of a rotating black hole, in the sense that there can be no static

observers. It is global identifications of this spacetime with ν2 > 1 that give rise to black

hole solutions with no CTCs [17].

– 4 –
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A way to understand the isometries of spacelike warped AdS3 is to notice that for

ν = 1, the metric (2.5) describes AdS3 when written as a Hopf fibration over AdS2

ds2 =
ℓ2

4

(

−(1 + r2) dτ2 +
dr2

1 + r2

)

︸ ︷︷ ︸

AdS2

+
ℓ2

4
(dx+ rdτ)2

︸ ︷︷ ︸

fibre

(2.7)

The six isometries of AdS3 form the group SL(2,R)L × SL(2,R)R. The SL(2,R)R, which

is generated by the L̃±1, L̃0 Killing vectors below, leaves the expressions in each of the

parentheses invariant. It is then apparent that upon turning on a 6= 1, the isometry group

of the space will be SL(2,R)R × U(1)L, where U(1)L - which is noncompact - is generated

by x-translations. The Killing vectors are

L̃0 = i ∂τ , J0 = −i ∂x (2.8)

L̃±1 = ±e±iτ

(
r√

1 + r2
∂τ ∓ i

√

1 + r2 ∂r +
1√

1 + r2
∂x

)

(2.9)

and they obey the usual SL(2,R) algebra under Lie brackets:

[L̃1, L̃−1] = 2L̃0 , [L̃±1, L̃0] = ±L̃±1 , [J0, L̃j ] = 0, j ∈ {0,±1}. (2.10)

In terms of the original AdS3 Killing vectors, the SL(2,R)R generators are preserved

by the warping, together with the J0 Killing vector of the SL(2,R)L isometries. The rest

are explicitly broken. Note that in spacelike warped AdS3 there is no Killing vector with

compact orbits: the isometry generated by L0 − L̃0, which was such a Killing vector in

AdS3, is explicitly broken by the warping.

2.3 Warped AdS3 black holes

As mentioned in the introduction, TMG contains black holes which are locally spacelike

stretched AdS3. The metric is given by

ds2

ℓ2
= dt2 +

dr̃2

(ν2 + 3)(r̃ − r+)(r̃ − r−)
+
(

2νr̃ −
√

r+r−(ν2 + 3)
)

dtdθ

+
r̃

4

(

3(ν2 − 1)r̃ + (ν2 + 3)(r+ + r−) − 4ν
√

r+r−(ν2 + 3)
)

dθ2 (2.11)

where θ is identified by 2π. The inner and outer horizons are given by r− and r+ which

are positive. Note that the above black holes are free of CTCs only for ν ≥ 1. As

discussed in [17], these black holes are obtained from discrete global identifications of

spacelike stretched AdS3. They are analogues for the case of warped AdS3 of the BTZ

black hole in AdS3. In fact, when ν = 1 the metric becomes the BTZ metric in a rotating

frame. We note that slices of constant t and θ are both spacelike for r̃ > r+. However, the

metric is everywhere Lorentzian.

The mass and angular momentum are related to r+ and r−. There is a continuous

spectrum of black holes all the way to r+ = r− = 0, where we find warped AdS3 in Poincaré

coordinates with τ identified. Following the analogy with BTZ in AdS3, we would expect

– 5 –
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that lowering the energy below the black hole continuum we should find a mass gap, with

global stretched AdS3 being the ground state. This is in fact not the case, and it can be

shown that there are no values of r± for which the metric is both real and has a global

SL(2,R)×U(1) isometry. Thus, the vacuum (unquotiented) space is not part of the family

of spacetimes (2.11). This is in agreement with the fact that global warped AdS3 has

no Killing vectors with compact orbits, a property that the metrics (2.11) clearly do not

share.2

It has been shown [31] that the black holes (2.11) obey the first law of thermodynam-

ics, once one employs the Chern-Simons corrected entropy formula [32–34]. In [17] this

entropy formula has been suggestively rewritten as the entropy of a thermal state in a

two-dimensional CFT with unequal left-and right-moving central charges

cR =
(5ν2 + 3)ℓ

ν(ν2 + 3)G
, cL =

4νℓ

(ν2 + 3)G
(2.12)

2.4 Asymptotic behavior

In order to answer questions about boundary conditions, we need to understand where the

boundary circle lies in the geometries of interest, since the conserved charges are constructed

as integrals over this circle.

Let us start with the warped black holes of the previous section. The boundary circle

consists of two disconnected pieces, one at r̃ → ∞ and one at r̃ → −∞, and each is

parameterized by θ. Asymptotically, the warped black hole metric can be written as

ds2

ℓ2
=

3(ν2 − 1)r̃2dθ2

4
+

dr̃2

(ν2 + 3)r̃2
+ dt2 + 2νr̃dtdθ + hµνdx

µdxν (2.13)

where the ‘perturbation’ hµν falls off at least one power of r̃ faster than the background [29].

The precise form of the boundary conditions defined near this boundary are given explic-

itly in [42].

Note that the asymptotic form of (2.11) and (2.5) are the same, given that

one identifies3

τ ↔ (ν2 + 3)

2
θ , r ↔ r̃ , x↔ (ν2 + 3)

2ν
(t− νr0 θ) (2.14)

Nevertheless, for global warped AdS3 both τ and x are noncompact, so this identification

only holds locally at asymptotic infinity. Moreover, it is not quite clear where the boundary

circle lies in these coordinates. If we consider a surface of constant τ - which is always

spacelike and always intersects the boundary, we find that the induced metric is

ds2τ = a2dx2 + dσ2 , σ = sinh−1 r (2.15)

Thus, the boundary circle consists of four pieces:

r → ±∞ , x finite , x→ ±∞ , r finite (2.16)

2We are grateful to A. Strominger for making this point.

3We define r0 =

√
r+r

−
(ν2+3)

2ν
.
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This is the same conclusion that one reaches when studying the boundary of AdS3 in fibered

coordinates (see appendix A). Quotienting along various Killing vectors [17] gives the black

holes (2.11). These quotients act on the boundary and split it into two disconnected circles

at r → ±∞.

3 Preliminaries II: first order perturbation theory

Having discussed the background geometry and its asymptotic structure, we now delve

into the linearized equations of motion. We also define the notion of energy, for both

propagating and pure large gauge solutions, that we will use to test stability.

3.1 Linearized perturbations around warped AdS3

Our goal is to study linearized perturbations around the background (2.5), and find out

whether they can destabilize the spacetime. The linearized equations of motion for a metric

perturbation hµν read

R(1)
µν −

(
1

2
R+

1

ℓ2

)

hµν − ℓ

3ν
C(1)

µν = 0 (3.1)

where

R(1)
µν =

1

2

(

∇λ∇µhλν + ∇λ∇νhλµ −∇λ∇λhµν −∇µ∇νh
µ
µ

)

C(1)
µν = ǫµ

αβ∇α

(

R
(1)
βν − 1

4
hβνR

)

− ǫµ
αβδΓλ

αν

(

Rβλ − 1

4
gβλR

)

(3.2)

δΓλ
µν =

1

2

(

∇µh
λ

ν + ∇νh
λ

µ −∇λhµν

)

(3.3)

All derivatives are taken with respect to the background metric (2.5).

When studying perturbations around AdS3, the fact that the background is maximally

symmetric drastically simplifies the third order linearized equations of motion. It can then

be shown [5] that if one chooses to work in harmonic gauge

∇µh
µν = 0 (3.4)

the equations of motion (3.1) take the form DMDLDRhµν = 0, where DI are three com-

muting linear differential operators. Of the three distinct solutions that one gets for generic

µ away from the chiral point, only one describes the propagating massive graviton, while

the other two are pure (large) gauge [5]. It is apparent that the condition (3.4) did not

completely fix the gauge redundancy in the problem.

Due to the fewer symmetries of the warped AdS3 background, we were unable to bring

the equations of motion to an analogously simple form. The most elegant option not readily

feasible, we have decided to attack these equations on two fronts:

• fix the gauge completely and solve the linearized equations of motion. In this way,

we are sure to only be describing the propagating mode.

– 7 –
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In agreement with our expectations, the equations of motion decouple.4 While the equation

we obtain is in principle tractable, for the purposes of this article it is only the asymptotic

behavior of the solution that is relevant, so we leave its full analysis for subsequent work.

• use the SL(2,R)R × U(1)L isometry of the background to classify perturbations. As

is well known, linearized solutions to the equations of motion must fall into represen-

tations of the isometry group of the background. The most commonly encountered

representation of the above isometry group is the highest weight one. We thus con-

sider a basis of perturbations ψµν that are eigenfunctions of U(1)L and belong to a

highest weight representation of SL(2,R)R

J0ψµν = kψµν , L̃0ψµν = ωψµν , L̃1ψµν = 0 (3.5)

While it is not true that all solutions to the equations of motion can be written as a

superposition of SL(2,R)R highest weight states and their descendants, such perturbations

are a physically relevant subclass of solutions, especially from the point of view of the

AdS/CFT correspondence. Even though our analysis is not exhaustive, it still proves

sufficient for the purposes of this article, as will soon become clear.

The solutions of physical interest can be split into two types:

• propagating, if the metric perturbation cannot be written as ψµν = Lξ ḡµν for any

diffeomorphism ξµ. Here ḡµν is the background metric (2.5).

• pure large gauge, if ψµν = Lξ ḡµν for some diffeomorphism ξµ that does not vanish

‘sufficiently rapidly’ at asymptotic infinity.

The propagating modes are easy to find: one first chooses a gauge such that all the

gauge freedom in choosing the metric components is fixed, and then proceeds to look for

solutions to (3.1) which have a wavelike behavior. In appendix B we describe such a gauge

fixing for the case in which the gravitational waves have a nontrivial dependence on the

coordinate x. An appropriate gauge-fixing for the x-independent case has been described

in [35].

Since we will concentrate our attention on highest weight solutions, we would like to

find a gauge which preserves the highest weight property. This basically requires that we

gauge-fix only using diffeomorphisms that commute with L̃1 and have appropriate weights

under L̃0 and J0.

Pure large gauge perturbations automatically satisfy the linearized equations of mo-

tion. Whether they are physically relevant is determined entirely by the choice of boundary

conditions, as will be reviewed in the next section. The pure large gauge modes are by def-

inition those which generically carry nontrivial conserved charges as measured at infinity,

and thus are physically relevant. For example, in pure Einstein gravity in AdS3, propa-

gating modes do not exist and it is precisely the pure large gauge modes that correspond

- upon quantization - to states in the dual CFT. A general procedure for computing the

conserved charges, finding a set of consistent boundary conditions and determining which

are the ‘large’ gauge transformations is presented below.

4We have assumed though that we can concentrate solely on separable momentum eigenstates.

– 8 –
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3.2 Consistent boundary conditions and the asymptotic symmetry group

The quest for consistent boundary conditions for the metric perturbations in a given back-

ground spacetime proceeds in several steps:

1. locate the boundary of the background spacetime

2. impose boundary conditions on the metric fluctuations at asymptotic infinity

3. find all the diffeomorphisms that preserve the boundary conditions

4. show that the boundary conditions are consistent, which requires computing all the

charges associated with the asymptotic symmetry generators and showing that they

are conserved, finite and integrable. If infinities are found, one may need to impose

additional boundary conditions, or altogether change the ones that were originally

proposed. The asymptotic symmetries are defined to be those allowed diffeomor-

phisms which have nonzero conserved charges on a generic allowed background.

5. find the Dirac bracket algebra of the asymptotic generators, which form the asymp-

totic symmetry group (ASG) [7], together with its eventual central extension.

The conserved charges Qξ associated with the asymptotic symmetry generators ξµ can

be computed in a variety of ways. A particularly nice formalism has been developed in [36].

If ḡµν denotes the background metric and hµν a perturbation satisfying the boundary

conditions, then the conserved charges Qξ[h, ḡ] are constructed as surface integrals over

the spacelike boundary ∂Σ of the (n-dimensional) spacetime

Qξ[h, ḡ] =

∫

∂Σ
K

(n−2)
ξ [h, ḡ] (3.6)

where K(n−2) is a particular n−2 form constructed from the linearized equations of motion

for hµν . The explicit expression for K(1) for TMG is given in [29].

The above expression for the charges is valid for finite (as opposed to infinitesimal)

hµν when a certain property called asymptotic linearity holds, which takes the form

Qξ[h, ḡ] = Qξ[h, ḡ + δg] , ∀ξ ∈ ASG (3.7)

where δgµν is any perturbation of the background metric consistent with the boundary

conditions. This is because the expression (3.6) was derived for linearized perturbations

δhµν around a given background, and one needs to integrate over a path in phase space

in order to find the charges associated with finite departures from the background metric.

Thus, the general expression for the charges is

Qξ[h, ḡ] =

∫

γ

Dδg

∫

∂Σ
K

(n−2)
ξ [δg, g(γ)] (3.8)

where γ is a path in phase space which connects ḡµν to ḡµν + hµν . The above integral

only makes sense if it is independent of the path γ, which reduces to the requirement of

charge integrability

Qξ[δh1, g + δh2] −Qξ[δh2, g + δh1] −Qξ[δh1 + δh2, g] = 0 (3.9)

– 9 –
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for any background metric gµν allowed by the boundary conditions.

Integrability needs to be checked for warped AdS3, as the theory is not asymptotically

linear in this background. Besides integrability, one also needs to check finiteness of the

generators (3.8) and conservation.5

3.3 The energy-momentum pseudo-tensor

In order to address the question of stability, we need to compute the energy of the various

gravitational perturbations [37–40] and find its sign. Using the formalism from the previous

section, the energy in question is just the charge associated to the relevant Killing vector

(∂τ in this case) of the back-reacted gravity solution.

In this section we follow the discussion in [9]. If we let ξµ∂µ = ∂τ and hµν be some

perturbation of the background metric ḡµν , then it can be shown that the expression for

the energy is

Qξ[h, ḡ] =
1

16πG

∫

Σ
⋆(ξµE(2)

µν [h(1)]dxν) (3.10)

where E
(2)
µν are the TMG equations of motion at second order in perturbation theory,

evaluated on a solution h
(1)
µν of the linearized equations of motion. Σ is a spatial slice at

constant τ and ⋆ denotes the Hodge star operation. The quantity −E(2)
µν (h(1)) is sometimes

also called the energy-momentum pseudo-tensor, because it sources the linearized equations

of motion for the second order metric perturbation. It reads

E(2)
µν = G(2)

µν +
ℓ

3ν
C(2)

µν (3.11)

where G
(2)
µν , C

(2)
µν are the Einstein and the Cotton tensor, respectively, evaluated to second

order in the perturbation h
(1)
µν . Since we are building plane waves along x, what we will

actually be computing is the energy density of a gravitational wave in the x-direction,

which is given by

EP =
1

16πG

∫

dr
√−g gτµE(2)

µν ξ
ν (3.12)

and try to establish its sign.

4 The massive gravitons

We find explicit highest weight solutions and the asymptotic structure for all solutions to

the linearized equations of motion. The energy density of the highest weight solutions is

found to be negative. However, we discard the modes by imposing boundary conditions.

4.1 Highest weight solutions

We consider the following Ansatz for the metric perturbation

ψµν(τ, r, x) = f6(r)e
i(kx−ωτ)






f1(r) f2(r) f3(r)

f2(r) f4(r) f5(r)

f3(r) f5(r) C6




 (4.1)

5In fact, conservation of the charges Qξ should hold by construction; however for relaxed boundary

conditions one must check conservation by hand.
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If we first solve the highest weight condition, we find that the functional form of the solution

is completely fixed, up to six constants Ci, i = {1, . . . , 6}, subject to rescaling by an overall

factor. The function f6(r) takes the form

f6(r) = ek tan−1 r(1 + r2)−
ω
2 (4.2)

while the ratios of the metric components take a relatively simple form

f1(r) = C5 + r C4 + r2C3

f2(r) =
i

2(1 + r2)

(
C4 − 2C1 + 2r (C3 − C2 − C5) − r2 C4

)

f3(r) = C1 + r C2

f4(r) =
1

(1 + r2)2
(2C2 − C3 − C6 + r (C4 − 2C1) − r2C5)

f5(r) =
i

1 + r2
(C2 −C6 − r C1) (4.3)

Next, we gauge-fix in such a way that the highest weight condition is preserved. It turns

out that as long as

k(k2 + a4) 6= 0 (4.4)

then one can always set C6 = f3(r) = f5(r) = 0 (actually f5 = 0 follows from the previous

two conditions). This amounts to setting three of the constants (C1 = C2 = C6) to zero.

Next, one plugs the gauge-fixed highest weight perturbation into a subset of the linearized

equations of motion, which can be written as

Av = 0 , A ∈ M3×3 , v =






C3

C4

C5




 (4.5)

The determinant of A is

detA = k2(a4 + k2)(k2 + (ω − 2)2)(a4 − k2 + a2(k2 − 1 − ω + ω2)) (4.6)

Thus, if detA 6= 0, the only solution is C3 = C4 = C5 = 0 and we conclude that all highest

weight modes of this form are pure gauge. If detA = 0 we get a non-pure gauge mode,

obtained when v is in the kernel of A. The constants C3,4 are then determined in terms of

C5 via the equations of motion.

Since we are looking for square integrable solutions, ψµν , and the range of x is infinite,

k must be real. For the classical analysis we are performing, we should also take ω to be

real. Thus we obtain a propagating mode only if

ω = ω± ≡ 1

2
±
√

k2

(
1

a2
− 1

)

+
5

4
− a2 (4.7)

For convenience, let us also define

ω1,2 ≡ 1

2
±
√

5 − 4a2

4
(4.8)

Given that ω, k ∈ R, we can distinguish several cases
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• a < 1. All values of k are allowed, while

ω ∈ (−∞, ω2) ∪ (ω1,∞) (4.9)

In this particular squashing parameter range, we have 1 < ω1 < (1 +
√

5)/2 and

(1 −
√

5)/2 < ω2 < 0.

• 1 < a <
√

5
2 . In order to have ω ∈ R, |k| must be bounded above as

k2 ≤ 5 − 4a2

4(a2 − 1)
a2 , while ω2 ≤ ω ≤ ω1 (4.10)

In this parameter range, we have 1
2 < ω1 < 1 and 0 < ω2 <

1
2 .

• a >
√

5
2 . Then there is no highest weight propagating solution to the linearized TMG

equations of motion in this background.

In summary, a propagating highest weight mode takes the form

ψµν(τ, r, x) =
1

(1 + r2)
ω
2

ei(kx−ωτ)+k tan−1 r






f1(r) f2(r) 0

f2(r) f4(r) 0

0 0 0




 (4.11)

with ω given by (4.7), fi(r) by (4.3) with C1 = C2 = C6 = 0 and C3,4 given in terms of C5

in the appendix. Moreover, k is subject to the restrictions mentioned above.

4.2 Energy

Our next task is to compute the energy of these modes using (3.12). Since the physical

metric perturbation must be real, we take

hµν = αψµν + α∗(ψµν)∗ (4.12)

Also, given that our wave solutions are ∂x eigenfunctions and the energy is obtained by

integrating over a whole spatial slice at constant τ , the energy of a single k-mode will

diverge. Thus, it is more appropriate to consider the energy density of the modes per unit

length in the x-coordinate. Finite energy configurations are then obtained by generating

linear combinations of the k-modes with compact support in x.

The expression for the energy density is analytically tractable but extremely lengthy

and unilluminating. Its salient feature is that it can be written as a rather simple integral:

EP = |αC5|2
∫

dr
e2k tan−1 r

(1 + r2)ω+4

8∑

n=0

rn bn(k, a) ≡
8∑

n=0

In(k, a) bn(k, a) (4.13)

where we have defined

In(k, a) ≡
∫ ∞

−∞
dr
rn e2k tan−1 r

(1 + r2)ω+4
, ω = ω(k, a) (4.14)
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One finds that the above integrals are non-divergent if Re[ω] > 1
2 and n ≤ 8. Thus we

should only restrict ourselves to the upper branch (ω+) of solutions (4.7), given that the

lower branch (ω−) always has divergent energy density.6 For n ≤ 8, the integrals In obey

a recursion relation

(Ω − n+ 1)In = 2kIn−1 + (n− 1)In−2 , Ω = 2ω + 6 (4.15)

so we can rewrite the whole expression for the energy in terms of I0(k, a). It turns out

that for the entire allowed range of k I0(k, a) is real and positive, whereas the coefficient

multiplying it is always negative. We thus conclude that

EP < 0 , ∀ a ∈ (0, 2) & ∀ k allowed. (4.16)

4.3 The asymptotics save the day

At first sight, the fact that the energy of the propagating highest weight modes is always

negative may sound discouraging as far as the stability of warped AdS3 is concerned.

Nevertheless, an important point is that a theory is not only defined by its Lagrangian,

but also by boundary conditions to be imposed on the fields.

Consider the expression (4.11) for the highest weight modes. The asymptotic behavior

of the metric perturbation is7

hττ ∼ r2−ω , hτx ∼ r1−ω , hτr ∼ r−ω ,

hxx ∼ r−ω , hrr ∼ r−2−ω , hrx ∼ r−1−ω (4.17)

Note that as r → ±∞ the perturbation roughly falls off by a factor of r−ω faster than the

components of the background metric. A set of boundary conditions for stretched AdS3

proposed in [29, 30], and further elaborated in section 5.1, require that perturbations fall

off at least by one power of r faster than the background metric. Thus we are instructed

to only include those highest weight modes which have

ω(k, a) ≥ 1 (4.18)

in the spectrum.

For stretched AdS3, a > 1 and ω(k, a) < 1. Thus we can conclude that all the

highest weight, negative energy propagating modes are excluded from the spectrum of TMG

in stretched AdS3 backgrounds. We will see in the following section that we can in fact

exclude all propagating modes from the spectrum of TMG if a > 1.

Notice that the presence of even a single negative energy mode in stretched AdS3

renders the theory unstable. The reason is that the a > 1 theory contains black holes [17],

which have positive energy in our conventions. It has been quite customary in the context

of TMG [1, 2] to reverse the sign of Newton’s constant G, which amounts to reversing the

6The ‘superradiant’ modes with complex ω± have Re[ω] = 1
2
, so they carry infinite energy density and

thus must be discarded.
7Note that when ω+ − ω− ∈ Z then logarithmic asymptotic behavior is also allowed. This occurs in

stretched AdS3 only for a <
√

5
2

and at isolated values of k in squashed AdS3.
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sign of the energy. In asymptotically flat space, the only allowed configurations are negative

energy massive gravitons, and switching the sign of G seems to render them harmless for

the stability of TMG about flat space. The sign of Newton’s constant is fixed by requiring

that the black holes have positive energy, and no further discussion is possible.

In the case of squashed AdS3, a < 1 and all modes have ω(k, a) > 1. Thus they are all

allowed by the boundary conditions (5.1) so long as we take wave packets with compact

support in x. Nevertheless, it is unclear whether these boundary conditions make sense in

the case of squashed AdS3.

Finally, for a = 1 - which is just AdS3 - the negative energy modes have ω = 1 and are

thus allowed by the boundary conditions, both (5.1) and Brown-Henneaux.8 Nevertheless,

we already knew that the propagating mode would have negative energy - since the limiting

AdS3 case must have µℓ = 3, so it is away from the chiral point.

4.4 General propagating solutions

We will now decouple the linearized equations for the propagating mode. Again, we assume

that the perturbation of interest is an eigenmode of energy and x-momentum, and thus it

can be written as hµν(τ, r, x) = ei(kx−ωτ)h̃µν(r). The k = 0 case has already been found

in [35] and will be discussed in the next subsection. Whenever k 6= 0, we can safely impose

the gauge

hµx = 0 (4.19)

as shown in appendix B. We therefore consider the metric Ansatz

hµν(τ, r, x) = ei(kx−ωτ)






−(1 + r2)g1(r) g2(r) 0

g2(r) (1 + r2)−1g3(r) 0

0 0 0




 (4.20)

The coupled system of equations (3.1) decouples as follows

g3
′′(r) +A(r) g3

′(r) +B(r) g3 = 0 (4.21)

where

A(r) =
P5(r)

(1 + r2)P4(r)
, B(r) =

P6(r)

(1 + r2)2P4(r)
(4.22)

and Pn(r) are nth degree polynomials in r, whose coefficients depend on k, a and ω.

The expressions for P4,5,6(r) are given in appendix C. The existence and regularity of the

solutions to (4.21) can be analyzed using Frobenius’ method. For more details we refer the

reader to appendix D. All we need from (4.21) is the asymptotic behavior of the solutions.

Following appendix D, we know that as r → ±∞ the solutions behave as

g3(r) =
1

rα

∞∑

s=0

as

rs
(4.23)

8At a = 1 the boundary conditions (5.1) are more restrictive than Brown-Henneaux boundary conditions,

as they only allow half of the usual AdS3 asymptotic symmetry group.
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where α is a solution to the indicial equation

α(α+ 1) − a0α+ b0 = 0 (4.24)

with

a0 = lim
r→∞

rA(r) = 2 , b0 = lim
r→∞

r2B(r) =
(a2 − 1)k2 + a2

a2
(4.25)

It is easy to see that the solutions are simply α± = ω± defined in (4.7). Consequently, near

r → ±∞, the solution behaves as

g3(r) ∼ r−ω± (4.26)

The remaining metric components have a similar asymptotic behavior g1,2(r) ∼ r−ω± .

Notice that we recover precisely the asymptotic behavior (4.17) of the highest weight modes.

There is one difference though, in that highest weight modes were obliged to have ω =

ω±(k, a), whereas no such relation is necessary in the case of general propagating modes.

In fact, if we consider an arbitrary but decoupled time dependence for the mode, i.e.

hµν(τ, r, x) = f(τ)eikxh̃µν(r), the equations of motion imply the same asymptotic falloff

for r as they did for the energy eigenstates. This agrees with the expectation that we

can construct generic solution by superimposing various highest weight modes and their

descendants, and possibly modes that belong to different SL(2,R) representations.9

In conclusion, we find that the most general propagating solution to the linearized

equations of motion of TMG has the same asymptotic behavior as the highest weight

modes do. The discussion in section 4.3 still applies and, for stretched AdS3, we can

invoke boundary conditions which exclude all propagating modes from the spectrum. The

remaining pure gauge modes form the subject of the next section.

4.5 Solutions with k = 0

Before we move on to the pure gauge modes, let us make a few comments on propagating

solutions with k = 0. As emphasized in appendix B and elsewhere, our gauge-fixing

condition does not apply in this case.

The appropriate gauge-fixing condition and equations of motion were written down

in [35], which studied the problem by dimensionally reducing it to propagation in AdS2.

The authors found that the propagating mode obeys an equation of the form

22φ−m2φ = 0 , m2 = −3(ν2 − 1)

ℓ2
(4.27)

It is not hard to show that the asymptotic falloff of the solution to this equation is the

same as our (4.17), if we set k = 0. Thus, propagating modes with k = 0 are allowed

or disallowed by the boundary conditions just as their k 6= 0 counterparts. This is to

9In the analysis of [41] it was noted that ω obeyed a quantization condition, ω = ω+ + n, n ∈ Z
+. This

quantization condition stemmed from the requirement that the solution be well-behaved near the origin

of AdS3. Due to the complexity of our equations, we have been unable to obtain a similar quantization

condition, although it is likely that it exists.

– 15 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
3

be expected, as different ways of gauge-fixing should not affect the allowed spectrum of

the theory.10

One further check that the equation (4.27) of [35] and our results indeed agree, is to

compare the conformal weight and mass of the k = 0 graviton. Consider a scalar field of

mass m which propagates in spacelike warped AdS3. We look for a highest weight solution

of the form

Φ(τ, r, x) = ei(kx−ωτ)φ(r) (4.28)

The conformal weight of the scalar is determined in terms of the mass m as

ω =
1

2
+

√

k2

(
1

a2
− 1

)

+
1

4
+ L2m2 , L =

ℓ√
ν2 + 3

(4.29)

Comparing the above result with ω+, we note that the graviton behaves as a scalar field

of mass

m2 = −3(ν2 − 1)

ℓ2
(4.30)

This coincides exactly with the result of [35] for the k = 0 case.

5 Boundary gravitons

Here we propose a set of boundary conditions for global stretched AdS3, which are a slightly

modified version of those put forth in [42] for the asymptotic black hole spacetime (2.13).

5.1 Boundary conditions for stretched AdS3

The boundary conditions we use for the asymptotic metric (rescaled by (ν2 + 3)l−2) at

large r are

gττ = (a2 − 1)r2 + r hττ + O(r0) , gτr = r−1hτr + O(r−2)

gτx = ar + hτx + O(r−1) , gxx = a2 + r−1hxx + O(r−2) ,

gxr = O(r−2) , grr = r−2 + r−3hrr + O(r−4) (5.1)

The perturbations hµν(τ, x) of the background metric would generically yield nontriv-

ial conserved charges, while the terms written as O(rn) do not contribute to the con-

served quantities.

These boundary conditions were developed in [29, 30] for the black hole metrics, where

τ is identified and the boundary lies at large r only. As noted in section 2.3, global

stretched AdS3 is not part of the black hole phase space, and the boundary has a piece

that lies at r finite and x → ±∞. Therefore, the boundary conditions listed above must

be supplemented by conditions on the falloff of the metric components at large x. We have

not studied precisely what these restrictions look like, but we always consider wave packets

which die off sufficiently fast11 as x→ ±∞.

10In the case of the propagating modes, one can check whether the falloff of the gauge-invariant quantities

respects the boundary conditions.
11For example, a falloff as |x|−2 at large |x| seems more than sufficient to ensure the finiteness of the

charges.
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Following our checklist from section 3.2, we need to make sure that the above boundary

conditions yield charges which are finite, integrable and conserved. A first thing to note is

that TMG with the above boundary conditions is not asymptotically linear. Thus, integra-

bility, finiteness and conservation of the charges for all finite hµν that obey the asymptotic

equations of motion must all be considered. This has been rigorously done in [42] for

asymptotically warped black hole geometries. As we show in appendix E, for fast enough

asymptotic falloff at large |x| the charges do not gain ay additional contributions from the

integrals along x or r, so consistency of the boundary conditions for global stretched AdS3

follows from consistency of the very related boundary conditions for the black holes.

5.2 Pure large gauge modes

In this section we will be exclusively working in the warped black hole coordinate sys-

tem (2.11). Given that the boundary conditions (5.1) have excluded all propagating modes

from stretched AdS3, all the remaining physical excitations in our theory must correspond

to pure large gauge modes: diffeomorphisms that do not fall off fast enough near the

boundary at r̃ → ∞. In [29], they were shown to take the form

ξθ = f(θ) +O

(
1

r̃2

)

, ξr̃ = −r̃f ′(θ) + O(1) , ξt = g(θ) + O
(

1

r̃

)

(5.2)

As reviewed in section 3.2, to each non-trivial large diffeomorphism there corresponds a gen-

erator of the asymptotic symmetry group. By expanding f(θ), g(θ) in Fourier modes, [29]

found the ASG to consist of one copy of the Virasoro algebra and a U(1) Kač-Moody

algebra. The Virasoro acquires a central extension, with positive central charge

cR =
(5ν2 + 3)ℓ

ν(ν2 + 3)G
> 0 (5.3)

which precisely confirms (half of) the conjecture in [17] and moreover ensures that all ener-

gies are positive. We thus conclude that stretched AdS3 with the boundary conditions (5.1)

is perturbatively stable at the classical level.

For ν < 1, θ cannot be identified in the coordinates (2.11), as the resulting spacetime

would have CTCs. We can thus no longer use the boundary conditions of [29]. The

boundary conditions (5.1) could in principle still hold, since our coordinate τ is noncompact.

Thus, if (5.1) are extendable to a full set of consistent boundary conditions for squashed

AdS3, then we conclude that the latter spacetime is unstable, since the negative energy

propagating modes are not excluded. Whether such an extension is possible for squashed

AdS3 is very unclear.

6 Summary and open questions

In this note, we have addressed the issue of the stability of spacelike warped AdS3. We

have found explicit propagating massive gravitons living in the highest weight representa-

tion of the SL(2,R)R isometry group and the asymptotic falloff of all propagating momen-

tum eigenstates.

– 17 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
3

Our highest weight solutions obey an equation of the form

[
1

2
(L+L− + L−L+) − L2

0 +
(1 − a2)

a2
∂2

u

]

ψµν = −(1 − a2)ψµν (6.1)

We have not managed to recover such an elegant equation in terms of the quadratic Casimir

from the general linearized equations of motion. The only exception is for k = 0, where

it was obtained by [35]. We suspect, however, that under the appropriate gauge choice

and field redefinition this is possible for all values of k. The fact that we have obtained

a decoupled second order wave equation for a single component of the perturbation is

evidence in this direction.

The explicit solutions we have obtained have negative energy density, however for

a > 1 they do not obey the set of boundary conditions discussed in section 5. Imposing

those boundary conditions leads us to discard all propagating solutions from the physical

spectrum about spacelike stretched AdS3. We take this to be strong evidence that TMG

has a stable set of vacua for a much larger range of the Chern-Simons coefficient, i.e. µℓ > 3,

than simply the chiral point µℓ = 1. To fortify this claim, it would be interesting to explore

the possibility of a positive energy theorem in the context of warped AdS3 in TMG [43–45].

If stability indeed holds, one might suspect that an initial AdS3 configuration in TMG,

which is known to have perturbative instabilities, decays to stretched warped AdS3.

We should point out that the boundary analysis in [29] only gave rise to a Virasoro

extension of the right-moving isometry group, together with a U(1) Kač-Moody algebra.

In particular, it did not give rise to the left moving, centrally extended, Virasoro pro-

posed in [17]. It would be very interesting if new consistent boundary conditions were

found for warped AdS3, which yield two copies of the Virasoro algebra as the ASG, with

the expected central charges. Using the explicit negative-energy solutions found herein,

it should be possible to immediately check the stability of warped AdS3 with the new

boundary conditions.

One of the puzzling features of global stretched AdS3 is that it does not clearly have

the same asymptotic structure as the stretched AdS3 black holes. It is unclear therefore

what the meaning of a partition function for stretched AdS3 is in this case, since one would

like to sum over configurations with the same asymptotic behavior. It is possible that one

would need to replace the global vacuum by the r+ = r− = 0 black hole.

We should also point out that stretched AdS3 could still be unstable at a nonpertur-

bative level.

Another open question is whether there exist boundary conditions under which the

negative energy propagating solutions can be discarded in the squashed warped AdS3

vacua. If we extrapolated the proposal in (5.1) we would conclude that the solutions are

true instabilities. On the other hand, a different set of boundary conditions resembling

those discussed in [18] may lead to an exclusion of all the propagating solutions for the

squashed case as well.

We have also noted the propagating solutions exhibit some interesting properties in

their own right. For instance there is a qualitative difference between the conformal weight

of the stretched and squashed solutions. In particular, for the squashed solutions the
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conformal weight is real for all allowed values of ν and k, whereas in stretched AdS3 it

is only real for a small window of parameter space given by k2 < (5−4a2)a2

4(a2−1)
. When the

weight becomes complex, the solutions propagate in the r-direction as well and thus there

is a flux of energy escaping the boundary. This is highly reminiscent of the behavior of a

scalar field in the near horizon geometry of the extremal Kerr black hole as was studied

in [46]. In fact, [46] noted that this behavior was related to the superradiance of rotating

black holes and we suspect a qualitatively similar phenomenon might be occurring in the

stretched warped AdS3 background, had we not discarded the solution.

It may also be worth noting that the mass squared of the massive gravitons (4.30)

becomes negative for the stretched case. Furthermore, when the warp factor satisfies

a2 > 5/4, the frequency of the highest weight solutions becomes complex for all values of

k. It would thus be interesting to explore the behavior of the theory in these regimes.

Finally, we would like to point out that for the squashed case there is another candidate

for a potentially stable vacuum given by timelike squashed AdS3. This spacetime is related

to spacelike squashed AdS3 by an analytic continuation in the coordinates given by τ → ix

and x → −iτ . Thus our expressions for the highest weight solutions are closely related

to the ones we have obtained. On the other hand, there are no black hole solutions or

consistent boundary conditions known for this spacetime and it would be interesting to

explore such questions.
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A Properties of global warped AdS3

We review the geometry of global AdS3 expressed as a Hopf fibration over AdS2 and show

geodesic completeness of spacelike warped AdS3.

A.1 Global vs. fibered coordinates in AdS3

The simplest way to picture AdS3 is as a Lorentzian hyperboloid embedded in R
2,2. If the

coordinates on Minkowski space are X0,X1,X2,X3, then AdS3 is the surface12

X2
0 −X2

1 −X2
2 +X2

3 = 1 (A.1)

Different coordinate systems are obtained via different embeddings. To obtain AdS3 in the

usual global coordinates

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2 (A.2)

12We have set the AdS3 radius ℓ = 1.
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with φ ∼ φ+ 2π, we use the following parametrization

X0 = cosh ρ cos t , X1 = sinh ρ sinφ

X3 = cosh ρ sin t , X2 = sinh ρ cosφ (A.3)

On the other hand, to obtain AdS3 in the fibered coordinates

ds2 =
1

4

[
− cosh2 σ dτ2 + dσ2 + (dx+ sinhσ dτ)2

]
(A.4)

we use the following embeddings

X0 = cos
τ

2
cosh

x

2
cosh

σ

2
+ sin

τ

2
sinh

x

2
sinh

σ

2

X1 = sin
τ

2
sinh

x

2
cosh

σ

2
− cos

τ

2
cosh

x

2
sinh

σ

2

X2 = − cos
τ

2
sinh

x

2
cosh

σ

2
− sin

τ

2
cosh

x

2
sinh

σ

2

X3 = − sin
τ

2
cosh

x

2
cosh

σ

2
+ cos

τ

2
sinh

x

2
sinh

σ

2
(A.5)

Note that in both cases we need to decompactify the time coordinate to avoid CTCs.

The coordinate transformation between the above coordinate systems is quite compli-

cated, but with the help of the embeddings we immediately find

− 2(X0X1 −X2X3) = sinhσ = sin(t− φ) sinh 2ρ (A.6)

−2(X0X2 +X1X3) = coshσ sinhx = − cos(t− φ) sinh 2ρ (A.7)

In the remainder of this section, we review the structure of the global AdS3 boundary

in the coordinates (2.5) [26, 47, 48], in the hope that they will help the reader improve his

or her intuition about this kind of spaces.

In usual global coordinates (A.2), the boundary is at ρ→ ∞ and is famously a cylinder,

parameterized by t and φ. We would like to find out where the boundary lies in terms of

the fibered coordinates (A.4) which are also global, but both τ and x are noncompact.

Using (A.6) we see that in order to reach the boundary at ρ → ∞, we must take

σ → ±∞ whenever t 6= φ mod π. Thus the boundary cylinder of AdS3 is parsed by null

strips of σ → ∞ and σ → −∞, as shown in figure 1.

Next, we have to understand what happens on the null lines on the boundary t =

φ mod π. Note first that all σ = constant hypersurfaces end on these null lines on the

boundary. From (A.6) and (A.7) we conclude that

sinhx = − cos(t− φ) sinh 2ρ
√

1 + sin2(t− φ) sinh2 2ρ
(A.8)

Thus, as we increase t (with φ fixed), x varies from −∞ to ∞ on the pink (σ → ∞) strips,

while it varies from ∞ to −∞ on the blue (σ → −∞) strips. Note that if we would like to

go around the φ circle at fixed t (say 0 < t < π), we first fix σ → ∞ and take x → −∞,

then fix x at this value and take σ → −∞, then fix σ and take x from −∞ to ∞, then cross
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Figure 1. A chromatic depiction of the way the fibered coordinates cover the AdS3 boundary

cylinder. Blue strips have σ → −∞ while pink strips have σ → +∞.

back to the σ → ∞ strip while keeping x→ ∞. Thus it is quite a bit more complicated to

describe the compact direction on the AdS3 boundary in the fibered coordinates.

In conclusion, in terms of the fibered coordinates (A.4), the boundary of AdS3 consists

of the two apparently disconnected pieces at σ → ±∞, but which are in fact connected at

x→ ±∞ into the expected boundary cylinder.

A.2 Geodesic completeness

We review the geodesic completeness of warped AdS3 [46, 47].13 Note that for a2 = 1, our

coordinates have been proven in [26] to be complete, i.e. they parameterize in a one-to-

one fashion the full embedded hyperbola. It is also clear that the coordinates are global

for a = 0.

The two conserved quantities associated to the Killing vectors ξµ

(x) = ∂x and ξµ

(τ) = ∂τ

are given by

dxµ(λ)

dλ
ξ(x)
µ = gxx

dx(λ)

dλ
+ gτx

dτ(λ)

dλ
= −p (A.9)

dxµ(λ)

dλ
ξ(τ)
µ = gτx

dx(λ)

dλ
+ gττ

dτ(λ)

dλ
= −e (A.10)

where λ is the affine parameter and p and e are constants. The equation ds2 = 0 determines

the equation obeyed by r(λ):

p2 − e2a2 + 2epa2r(λ) − p2(−1 + a2)r(λ)2 + L4a2r′(a)2 = 0 (A.11)

13Geodesic completeness means that all geodesics are extendible to arbitrarily large positive and negative

values of their affine parameter. In particular, boundary points are only reached at infinite affine parameter.
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where L2 ≡ ℓ2/(ν2 + 3). The null geodesic equation can be solved exactly for r(λ). For

a2 6= 1 and p 6= 0 we find in the limit of large r

r(λ) ∼ e±
√

p2(−1+a2)

L2a
λ. (A.12)

Given that r spans the whole real line, it is clear that the points at infinity are not reached

for any finite value of the affine length. Also interesting is the fact that for a2 < 1 the

null geodesics carrying non-vanishing momentum along the x-direction are confined within

r <∞ [47].

We can also examine the equations obeyed by τ and x

τ(λ) =
1

B

∫ λ

λ0

dη
(e− pr(η))

1 + r(η)2
(A.13)

x(λ) =
1

L2

∫ λ

λ0

dη

(

− p

L2a2
+
r(η)(−e + pr(η))

1 + r(η)2

)

(A.14)

Since there are no poles in the integrands, one sees that the infinities of u and τ are not

reached for any finite value of λ.

Timelike geodesics obey the equation ds2 = −dλ2, which leads to

p2 − e2a2 + L2a2 + 2epa2r(λ) +
(
−p2(−1 + a2) + L2a2

)
r(λ)2 + L4a2r′(λ)2 = 0 (A.15)

Once again, the solutions found asymptotically to be of the form

r(λ) ∼ e±
√

p2(−1+a2)−L2a2

L2a
λ. (A.16)

For a2 < 1 the geodesics are confined. For a2 > 1 we find that the geodesics can touch the

boundary whenever p2 > L2a2/(a2 − 1), which is qualitatively different from the timelike

geodesics in AdS3. For the special value of p2 = L2a2/(a2 − 1) with a2 > 1 our timelike

geodesics soften to the form

r(λ) ∼ λ2 (A.17)

In this case too, however, the boundary is reached only at infinite affine parameter. Thus,

our spacetime is timelike and null geodesically complete.

B Gauge-fixing

In this appendix we present a careful derivation of the gauge-fixing condition hµx = 0,

which holds for all modes with k 6= 0.

Let us write the background 3d metric as

ds2 = gµνdx
µdxν + a2(dz +Aµdx

µ) (B.1)

where for the rest of the section µ ∈ {0, 1} and

ds22 = −(1 + r2) dτ2 +
dr2

1 + r2
, A = rdt (B.2)
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The inverse metric reads

gMN =

(

gµν −Aµ

−Aν a−2 +A2

)

(B.3)

while the 3d Christoffel symbols are

(3)Γρ
µν = (2)Γρ

µν +
a2

2
gρσ(AνFµσ +AµFνσ) , Fµν = ∂µAν − ∂νAµ = L2ǫµν (B.4)

(3)Γz
µν = −(2)Γρ

µνAρ −
a2

2
Aσ(AνFµσ +AµFνσ) +

1

2
(∂µAν + ∂νAµ) (B.5)

Γλ
zµ =

a2

2
gλρFµρ , Γz

zµ =
a2

2
AλFλµ , Γλ

zz = Γz
zz = 0 (B.6)

Next, the strategy is as follows: we consider small perturbations of the background metric

gMN = ḡMN + hMN (B.7)

and expand them in Fourier modes in z

hµν(x, z) =

∫

dk h(k)
µν (x) eikz , hµz(x, z) =

∫

dk a(k)
µ (x) eikz

hzz(x, z) =

∫

dk φ(k)(x) eikz (B.8)

We would now like to gauge-fix these perturbations. Under a general diffeomorphism, to

leading order, the perturbation hMN transforms as

δ hMN = ∇MξN + ∇NξM (B.9)

The action of the above diffeomorphisms on the Fourier modes of the metric perturbation is

δh(k)
µν = ∇µξ

(k)
ν + ∇νξ

(k)
µ − a2(AνFµσ +AµFνσ)(ξσ

(k) −Aσξ(k)
z ) − (∇µAν + ∇νAµ)ξ(k)

z

δa(k)
µ = ∂µξ

(k)
z + ik ξ(k)

µ − a2Fµλ(ξλ
(k) −Aλξ(k)

z ) , δφ(k) = 2ik ξ(k)
z (B.10)

where ξ
(k)
M are the Fourier modes of the diffeomorphisms. Now we turn to gauge fixing. It

is quite easy to see that we can set

φ(k) = a(k)
µ = 0 , k 6= 0 (B.11)

by fixing the corresponding modes of the diffeomorphisms. In this case, h
(k)
µν

is gauge-invariant.

We need to use a slightly different gauge-fixing for the zero-modes. φ(0) is clearly gauge

invariant, while a
(0)
µ can also be set to zero. The residual gauge transformations satisfy

ξλ
(0) = Aλξ(0)z +

1

a2L2
ǫλµ ∂µξ

(0)
z (B.12)

One can use this residual gauge freedom to set the trace of h
(0)
µν to zero. Indeed

δh = 2∇µξ
µ
(0) − 2a2AµFµνξ

ν
(0) − 2∇µA

µξ(0)z = −2a2AµFµνξ
ν
(0) (B.13)
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which we can set to zero by choosing ξ
(0)
µ = ξ

(0)
z Aµ. All gauge freedom is fixed this way.

We therefore conclude that a completely gauge-fixed form of the perturbation for k 6= 0 is

hMN (xµ, k) = eikz

(

h
(k)
µν 0

0 0

)

(B.14)

while for k = 0 we could have

hMN (xµ, 0) =

(

h
(0)
µν 0

0 φ(0)

)

, tr h(0) = 0 (B.15)

or alternatively use the gauge employed in [35].

C Various expressions

The expressions for the coefficients C3,4 which enter the solution of the highest weight

propagating modes read

C3 =
(−1 + a2)(−1 + ω)(−2 − a2 + ω)C5

−2 + a4(−2 + ω) + ω − a2(−4 + ω + ω2)
(C.1)

C4 = − a2
√
−1 + a2 (−2 + a4 + ω(2 + (3 − 2ω)ω) + a2(1 + ω(−5 + 2ω)))C5

√

−a2(−1 + a2 + (−1 + ω)ω) (−2 + a4(−2 + ω) + ω − a2(−4 + ω + ω2))
(C.2)

The expressions for the polynomials P4,5,6 which enter into the linearized equations of

motion for the propagating modes are

P4(r) = a4ω2
[

a6+a4ω2+k2(−4a2−1+ω2)
]

+2a4kω
[

a6−a2(1+4k2)+2a4(−1+ω2)+2k2(1+ω2)
]

r

+
[

a2(−1+a2)k2(−3a4+a6+k2−a2(1+4k2))+a4(a6−4a2k2+6k4+a4(1+6k2))ω2
]

r2

+2a4k
[

a2(−1−a2+a4)+(3−4a2+2a4)k2+2k4
]

ωr3

+a2k2
[

−k2+a2(1+2a2−3a4+a6+(6−4a2+a4)k2+k4)
]

r4 (C.3)

P5(r) =−2
[

a4kω
(

a6−a2(1+4k2)+2a4(−1+ω2)+2k2(1+ω2)
)]

−2
[

a2
(

k2(−1+a2)(−3a4+a6+k2−a2−4a2k2)

+a2(a4−2a6+3k2+8a2k2+6a4k2+6k4)ω2−3a2(a4+k2)ω4
)]

r

+2a4kω
[

2a6−2a2(1+4k2)+a4(−7−6k2+10ω2)+k2(1−6k2+10ω2)
]

r2

+4a4
[

−k2(1+k2)(a4+k2)+(a6−4a2k2+6k4+a4+6a4k2)ω2
]

r3

+6a4k
[

a2(−1−a2+a4)+(3−4a2+2a4)k2+2k4
]

ωr4

+2a2k2
[

−k2+a2
(

1+2a2−3a4+a6+(6−4a2+a4)k2+k4
)]

r5 (C.4)
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P6(r) = a2ω2
[

a10−k4(1+ω2)+a8(3+2ω2)−a4k2(3+4ω]2) (C.5)

+a2k2(−1+2k2+2ω2+ω4)+a6(3k2+3ω2+ω4)
]

+2a2kω
[

(−1+a2)(a4+k2)(a2+a4+2k2)+2(−2a6+2a8+2a2k2−k4

−a4(1+4k2))ω2+3a2(a4+k2)ω4
]

r

+
[

(−1+a2)k2(a4+4a6−2a8+a10+a4(2+3a2)k2+(−1+2a2)k4)

+a2(a6(−3+5a2+2a4)+2a4(1+6a2(−3+a2))k2−2(3−8a2+12a4)k4−6k6)ω2

+a2(2a6(4+a2)+a2(7−4a2+15a4)k2+(−1+15a2)k4)ω4
]

r2

+2a2kω
[

2a10−2k4(4+k2+ω2)+a8(−1+4k2+4ω2)+a4(1−8k4−2ω2+k2(10−8ω2))

+2a6(3(−1+ω2)+k2(−9+5ω2))+2a2k2(−3+7ω2+k2(4+5ω2))
]

r3

+
[

−k2(a2+k2)(−2k2+a2(2+4a2−7a4+7a6−2a8+(10−7a2+4a4)k2+k4))

+a2(a6(1+a2)2+a2(5+5a2−9a4+12a6)k2

+(−5+44a2−24a4+15a6)k4+3(−2+5a2)k6)ω2
]

r4+

+2a2k
[

a4(−1+a2)2(1+a2)+a2(−1+12a2−11a4+4a6)k2

+(−6+16a2−8a4+3a6)k4+(−2+3a2)k6
]

ωr5

+
[

(−1+a2)k2(a2+k2)
(

−k2+a2(1+2a2−3a4+a6+(6−4a2+a4)k2+k4 )
)]

r6

The asymptotic form of the ratios of these polynomials that appear in the equations of

motion is

A(r) =
2

r
+ O(r−2) , B(r) =

(a2 − 1)(a2 + k2)

a2r2
+ O(r−3) (C.6)

D Analysis of the linearized equation of motion

In section 4.4 we have obtained the equation of motion for the propagating mode of TMG,

which takes the following form

d2w

dz2
+ f(z)

dw

dz
+ g(z)w = 0 (D.1)

The variable z is real in our case, but it could in principle be complex. The above differential

equation is said to have a regular singular point at z = z0 if f(z), g(z) are not analytic at

z0, but (z − z0)f(z) and (z − z0)
2g(z) are [49].

If the differential equation only has regular singular points (or no singular points at

all, which occurs when f(z), g(z) are analytic in the whole domain of definition), then

solutions to these equation can be constructed. If the singularities of f and g are worse

than above then the equation is said to have irregular singular points and oftentimes the

solutions cannot be found.
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In our case, as long as P4 does not have roots of multiplicity more than one which do

not occur concomitantly with roots of P5, the differential equation has only regular singular

points. The behavior of the solution in the neighborhood of such a point is given by (we

set z0 = 0 for simplicity)

w(z) = zα
∞∑

s=0

asz
s (D.2)

where α is called the exponent or index of the singularity and satisfies the equation

α(α − 1) + f0α+ g0 = 0 (D.3)

where f0, g0 are the constant terms in the Taylor expansion of zf(z), z2g(z) around z0 = 0

zf(z) =
∞∑

s=0

fsz
s , z2g(z) =

∞∑

s=0

gsz
s (D.4)

The expression (D.2) for the solution to the differential equation has radius of convergence

equal to the radius of convergence of the Taylor expansions (D.4). There are two solutions,

corresponding to the two roots of the indicial equation (D.3). If the solutions coincide or

differ by an integer, one of the solutions acquires a logarithmic term.

The regular singular point can also occur at infinity, in which case we change variables

to u = z−1. The equation (D.1) can be rewritten as

d2w

du2
+ p(u)

dw

du
+ q(u)w = 0 (D.5)

with

p(u) = 2z − z2f(z) , q(u) = z4g(z) (D.6)

The coefficients that now appear in the indicial equation are the constant terms in the

expansion of 2 − zf(z) and z2g(z) as z → ∞. One can easily show that if α is a solution

of the following indicial equation

α(α+ 1) − p0α+ q0 = 0 (D.7)

where

zf(z) =

∞∑

s=0

ps

zs
, z2g(z) =

∞∑

0

qs
zs

(D.8)

then the solution asymptotically takes the form

w(z) =
1

zα

∞∑

s=0

as

zs
(D.9)

In conclusion, what must be done is to find the zeroes of P4(r), make sure they do not

lead to poles of multiplicity higher than one in A(r), and match the solutions on the

different patches.
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E Consistency checks of the boundary conditions

As reviewed in section 3.3, the conserved charges in the Barnich-Brandt formalism [36]

are constructed as boundary integrals of a given one-form, Kµ which is determined by the

equations of motion of the theory. For TMG, the appropriate form of Kµ = ǫµνρF
νρ was

given in [29]. In this section, we consider the charges

Qξ =

∫

∂Σ
Kµdx

µ, (E.1)

where ∂Σ is the boundary of global warped AdS3. We reduce the questions of their integra-

bility, finiteness and conservation to the question of consistency of the boundary conditions

for the black hole spacetimes (2.11). The latter is answered in the affirmative in [42]. Since

we do not know what precise contour the boundary circle of global warped AdS3 follows,

our strategy is to analyze each component of the integrand Kµ. While we do restrict

ourselves to linear perturbations around global warped AdS3, we believe that the sim-

ple structure we find also holds for perturbations around any background allowed by the

boundary conditions (5.1).

The asymptotic symmetry group is generated by diffeomorphisms of the form

ξτ = f(τ) , ξr = −rf ′(τ) , ξx = F (τ) (E.2)

Let Eµν(τ, x) be the linearized equations of motion for the asymptotic perturbation hµν ,

and let E
(x)
µν (τ, x) be its indefinite integral with respect to x: ∂xE

(x)
µν (τ, x) = Eµν(τ, x). We

find the following very simple structure

Kτ = r · f(τ)E(x)
τr + O(r0)

Kx = f(τ)Err + ∂x(something) + O(r−1)

Kr = O(r−1) (E.3)

The equations of motion imply that the divergent part of Kτ is simply an integration

constant which is in fact zero [42].

If we impose restrictive enough boundary conditions at large x, it is clear that Kx and

Kr will in fact vanish since they only get contributions from |x| → ∞, which are eliminated

by our unspecified boundary conditions. The expression for the charges is then identical to

the warped black hole case, except for the range of the τ integration. Consistency of our

boundary conditions immediately follows, since the charges have been proven to be finite,

integrable and conserved at the full nonlinear level for the warped black hole case.

This analysis strongly points towards the consistency of the boundary conditions (5.1)

for an appropriate falloff at large |x|. However, one must still prove the integrability of

the charges and show that similar simplifications occur for the full asymptotic equations

of motion. Also, it is not clear how restrictive the boundary conditions in |x| can be.

In particular, it is not a priori clear whether wave packets are allowed by our boundary

conditions for all time: if we start with a wave packet localized in the |x| direction, it may

spread to large x in time.14 While wave packets in stretched AdS3 are already excluded by

their r-falloff, it would be nice to better understand the boundary conditions at large |x|.
14We are grateful to G. Compère for pointing this out.
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